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Successive Release of Tissue Inhibitors of
Metalloproteinase-1 Through Graphene
Oxide-Based Delivery System Can Promote
Skin Regeneration
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Abstract

The purpose of this study was to testify the hypothesis that graphene oxide (GO) could act as an appropriate
vehicle for the release of tissue inhibitors of metalloproteinase-1 (TIMP-1) protein in the context of skin repair. GO
characteristics were observed by scanning electron microscopy, atomic force microscopy, and thermal gravimetric
analysis. After TIMP-1 absorbing GO, the release profiles of various concentrations of TIMP-1 from GO were
compared. GO biocompatibility with fibroblast viability was assessed by measuring cell cycle and apoptosis. In vivo
wound healing assays were used to determine the effect of TIMP-1-GO on skin regeneration. The greatest intensity

of GO was 1140 nm, and the most intensity volume was 10,674.1 nm (nanometer). TIMP-1 was shown to be
continuously released for at least 40 days from GO. The proliferation and viability of rat fibroblasts cultured with
TIMP-1-GO were not significantly different as compared with the cells grown in GO or TIMP-1 alone (p > 0.05).
Skin defect of rats treated with TIMP-1 and TIMP-1-GO showed significant differences in histological and
immunohistochemical scores (p < 0.05). GO can be controlled to release carrier materials. The combination of
TIMP-1 and GO promoted the progression of skin tissue regeneration in skin defect.
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Background
Skin lesions can be caused by many factors such as ac-
cidents, diabetic complications, burns, or superficial
surgery [1]. Autogenous skin transplantation, or bio-
polymers used for fabrication of the artificial skin, rep-
resents the most common approach used for wound
closure [2]. These substitutes can include a limitation
of available donor soft tissue, especially in severely
burned patients [3], infection [4], pain, and skin flap
necrosis [5], slowing healing and biocompatibility of
the material.

Tissue inhibitor of metalloproteinase-1 (TIMP-1) pre-
vents the extracellular matrix (ECM) from being decom-
posed by forming an inhibitory complex with the matrix
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metalloproteinases (MMPs) [6, 7]. TIMP proteins also
control the MMP-driven turnover and processing of
growth factors as well as cytokines linked to wound re-
pair and regeneration [8]. TIMPs and MMPs are regu-
lated during normal wound healing, and their imbalance
has been implicated in skin repair defects, keloids, and
fibrosis [9]. Epithelial-derived TIMP-1 can regulate epi-
thelialization in different stages either directly or indir-
ectly. An important phase of excisional wound repair
and skin regeneration is re-epithelialization, which is the
re-growth of epithelia over a traumatic surface [10]. Re-
epithelialization occurs when cells at the wound margin
loosen their cell-cell and cell-ECM contacts and begin
to migrate across the wound. These processes have been
linked to TIMP-1 biology [11].

An optimal regional TIMP-1 administration system
for the restoration of the skin is dependent on the de-
livery vehicle used. Some delivery vehicles designed to
release cytokines have been developed [12]. Carriers
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include PLGA (poly(lactic-co-glycolic acid)) [13], chi-
tosan [14], PLGA nano-spheres [15], and hydrogels.
The use of a delivery vehicle would help reduce the
TIMP-1 dosage for skin regeneration and allow a re-
gional delivery of the agent. Graphene is composed of
carbon atoms with a flat monolayer and a honeycomb-
like two-dimensional structure [16]. Graphene oxide
(GO) has been used as a small molecule drug delivery
vehicle in literature as it has efficient loading (absorp-
tion), is biocompatible, and has low toxicity [17-19].
Essential characteristics of GO include hydrophobic
domains in the core of the structure with ionized re-
gions along the edges. The distinctive m—m stacking
interaction makes GO efficient with water solubility,
with a large specific surface area for high loading cap-
acity [20, 21].

In the present study, we have investigated whether
recombinant human TIMP-1 protein can be paired
with GO as a delivery vehicle to improve skin regener-
ation. To investigate the effect on skin regeneration,
TIMP-1 has been loaded onto GO flakes, and its
release and toxicity are measured in vitro via rat fibro-
blasts. The results are finally tested on rats where a
skin wound model is used.

Materials and Methods

Cell Culture

Rat fibroblasts were purchased from the Institute of
Biochemistry and Cell Biology, CAS (Shanghai, China),
and cultured in Dulbecco’s modified Eagle’s medium
(DMEM, GibcoBRL, Gaithersburg, MD, USA) contain-
ing 10% (v/v) fetal bovine serum (FBS, Gibco). The
medium was changed every 2 days. All the cells were
kept at 37 °C.

GO Characterization

GO flakes were purchased from Chengdu Organic
Chemicals Co., Ltd. Chinese Academy of Science
(Chengdu, China) and characterized using scanning
electron microscopy (SEM, JSM-6701F, JEOL, Tokyo,
Japan) after platinum coating. The samples were
scanned under a scanning electron microscope
(Hitachi S3000N) at 15 kV accelerating voltage. The
size distribution of the GO flakes was determined with
a zeta electric potential-based spectrophotometer
(Zetasizer 3000 HSA, Malvern, UK). The morphology
of the GO flakes was determined using atomic force
microscopy (AFM, MultiMode, VEECO, USA) coupled
with an inverted microscope (IX71 inverted micro-
scope, Olympus, Tokyo, Japan). Thermal gravimetric
analysis and differential scanning calorimetry were
performed using a TGA/DSC thermogravimetric
analyzer (Pyris 1 TGA, Perkin-Elmer, USA) by placing
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the samples in alumina pans and applying a heating
ramp from 25 to 1100 °C at 10 °C/min.

TIMP-1 Adsorption on GO

GO flakes were labelled with 1,1-dioctadecyl-3,3,3,3-
tetram-ethylindocarbocyanine perchlorate (Dil, red,
Sigma) before human recombinant TIMP-1 (Huaan
Co., Hangzhou, China) adsorption. For TIMP-1 ad-
sorption, fluorescein isothiocyanate (FITC, green,
Thermo Scientific, Rockford, IL, USA)-conjugated
TIMP-1 (Huaan Co., Hangzhou, China) and Dil-
labeled GO were added to phosphate-buffered saline
(PBS) and incubated for 4 h at 4 °C. The ratio of GO
to recombinant TIMP-1 was 1:1 by weight. To deter-
mine the TIMP-1 loading on GO, TIMP-1 (1 pg) was
added to 20 pl of PBS containing GO and incubated
for 4 h at 4 °C. TIMP-1 adsorbed to GO was visualized
using a laser scanning confocal microscope (IX81-
FV1000 inverted microscope, Olympus). To confirm
TIMP-1 adsorption onto GO, Fourier-transformed in-
frared spectroscopy (FTIR) was performed using a Ni-
colet 5700 spectroscopy (ThermoFisher Co., SGE,
Australia) on pellets (10 mm in diameter) prepared by
blending 2 mg GO with 100 mg KBr and pressing to
produce the pellet to be analyzed. Spectra were ana-
lyzed after baseline correction by the software EZ
OMNIC (Nicolet).

Release Kinetics of TIMP-1 Protein

The release profiles of TIMP-1 from various GO con-
centrations (10, 20, and 30 pg/ml) were determined
using a commercial human TIMP-1-specific enzyme-
linked immunosorbent assays (ELISAs, R&D Systems
Inc., Minneapolis, MN, USA). Following incubation
for 4 h at 4 °C, an ELISA of the supernatant showed
that virtually all the TIMP-1 was adsorbed on the GO.
The TIMP-1-loaded GO was suspended in 60-mm cul-
ture dishes containing 1.5 ml PBS. The dishes were
then incubated at 37 °C. At various time points, the
supernatant was collected after continuous agitation
and fresh buffer was added to the culture dishes. The
concentration of human TIMP-1 in the supernatant
was determined by ELISA.

GO Biocompatibility Assay

Twenty micrograms per milliliter GO flakes loaded
with a 20 pg/ml concentration of TIMP-1 were added
to rat fibroblast cultures, and the cells were cultured
for 6, 24, 48, and 72 h. Cell viability was evaluated by
using the cell counting-8 (CCKS) assay as described in
manufacturer’s instruction. The absorbance of the
sample was expressed as absorbance value at 450 nm
(n = 5 for each group).
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Flow Cytometric Characterization

Fibroblasts were harvested by trypsinization and
labeled with Hoechst 33258 and Annexin-V-FITC/PL
Cell cycle activity and cell apoptosis were subse-
quently determined by flow cytometry analysis kit
(Lianke, Hangzhou, China). Labeling was performed
for 30 min at 4 °C in the presence of blocking reagent
(Lianke, Hangzhou, China), followed by two washing
steps using PBS. After washing and fixing, at least 10*
cells were acquired and analyzed. Flow cytometric
analysis was performed using a Becton Dickinson
FACSCanto II.

In Vivo Experiment

All experimental procedures were conducted accord-
ing to the guidelines of the NIH in the USA. The
animals for experimental procedures were approved
by the Zhejiang University Ethics Committee. Four-
week-old male Sprague—Dawley rats were adminis-
tered skin defect surgery (SDS) as described
previously (Fig. 4a) [22]. The size of skin defection
was 10 mm x 10 mm. After the surgery, the animals
were returned to their individual cages. Fourteen
days after SDS, the animals were randomly divided
into four groups and therapy was initiated. Local in-
jections of control agent (4 ml PBS only), GO agent
(4 ml GO with PBS, 1:20), TIMP-1 agent (4 ml
TIMP-1 with PBS 1:20), or TIMP-1-GO agent (4 ml
GO with TIMP-1, 1:1 v/w) were administered
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subcutaneously. The injections were made every
week around the skin defect (a total of 4 points,
1 ml each) for a total of two treatments over a span
of 2 weeks. The rats were sacrificed 4 weeks after
surgery (Fig. 4a). The regenerated skin was dissected,
embedded in paraffin, and investigated by hematoxylin—
eosin staining and Masson staining.

Histological and Immunohistochemical Analysis

The regenerated skins were fixed in 4% formalin for
72 h. Then, the samples were decalcified in 9% formic
acid for 2 weeks at room temperature. The samples of
skin were dehydrated by graded ethanol. The
consecutive sections were stained with hematoxylin—
eosin (HE) and Masson. Expression of CD34 at the
skin defect was analyzed by immunohistochemical
staining. The sections were dewaxed in xylene and hy-
drated through graded alcohols. After blocking with
1% goat serum (1:100 dilution, Sigma), the sections
were incubated with primary antibodies against CD34
(Abcam, Cambridge, UK) overnight at 4 °C. After
washing with PBS for three times, the sections were
incubated with secondary antibody for 1 h at 37 °C.
Staining was developed with 3,3’-diaminobenzidine
(DAB) solution (Dako, Hamburg, Germany). The re-
generated skin was observed by three trained
observers. The immunohistochemical sections were
staged using the percentage of DBA.
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Fig. 1 GO absorption. a 2D representation of GO images showed at AFM. b SEM shows that GO flakes are irregularly shaped sheets. The GO
flakes were irregularly shaped sheets. ¢ The size distribution of the GO flakes. The greatest intensity was 1140 nm and the most intensity volume
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Statistical Analysis

All experiments were repeated three times, and the
data were presented as means + standard deviation.
One-way ANOVA and the Student—Newman—Keuls post
hoc test determined the level of significance. p values
which are less than 0.05 and 0.01 were respectively con-
sidered to be significant and highly significant. Statistical
analysis was performed with SPSS 17.0 (SPSS Inc,
Chicago, USA).

Results

GO Characterization

The 2D representation of GO images is showed at
AFM (Fig. 1a). A SEM showed that the GO flakes were
irregularly shaped sheets (Fig. 1b). The size
distribution of the GO flakes was measured by an elec-
tric potential-based spectrophotometer. The greatest
intensity of size distribution was 1140 nm, and the
most intensity volume of the GO was 10,674.1 nm
(Fig. 2a).

TIMP-1 Adsorption on GO
Following is the incubation of FITC-conjugated
TIMP-1 (green) and Dil-labeled GO (red) in PBS for
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4 h; TIMP-1 was adsorbed onto the GO. The analysis
revealed that 75 + 1.2% of GO was absorbed to TIMP-
1 after 4 h, which suggested that GO efficiently binds
to TIMP-1 protein (Fig. 1c). We investigated the
chemical composition of TIMP-1-GO using FTIR
spectroscopy (Fig. 2b). The waveform and the wave
peak of GO were significantly different from those of
TIMP-1-GO. We further investigated the thermal
gravimetric analysis between control GO and TIMP-1-
GO (Fig. 2d). The curve of thermal gravimetric
analysis showed no appreciable differences between
control GO and TIMP-1-GO.

TIMP-1 Release

Various concentrations of TIMP-1 (group 1 3 pg/ml,
group 2 2 pg/ml, and group 3 10pg/ml) were loaded
onto GO. The cumulative release profiles of TIMP-1 are
shown in Fig. 2c. The 2 pg/ml TIMP-1-GO release
reached 50% cumulative release more rapidly as com-
pared to the 10 and 30 pg/ml TIMP-1 dose. TIMP-1
was continuously released for about 40 days. This sug-
gests that the application of TIMP-1 embedded in GO
may represent a suitable system for prolonged TIMP-1
release (Fig. 2c).
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Fig. 2 GO and TIMP-1-GO characterization. a TIMP-1 was absorbed onto GO. The analysis revealed that 75 + 1.2% of GO was absorbed to TIMP-1.
b The cumulative release profiles of TIMP-1 were recorded. TIMP-1 embedded in GO represents a suitable system for prolonged TIMP-1 release
about 40 days. ¢ The chemical composition between the GO and TIMP-1-GO was investigated using FTIR spectroscopy. The waveform and the
wave peak of GO were significantly different from those of TIMP-1-GO. d The curve of thermal gravimetric analysis shows no major differences
between GO and TIMP-1-GO from 50 to 800 °C. The curve of thermal gravimetric analysis showed no appreciable differences between control
GO and TIMP-1-GO
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Cell Proliferation and Viability on TIMP-1-GO

The proliferation and viability of rat fibroblasts cul-
tured in control, GO and TIMP-1, were not appre-
ciably different than those of the cells grown in the
different samples of TIMP-1-GO (p > 0.05). The cell
cycle and apoptosis of fibroblasts cultured in control,
GO and TIMP-1, were not appreciably different than
that of cells grown in the samples of TIMP-1-GO
(p >0.05) (Fig. 3a—c).

Efficacy of TIMP-1-GO in Excisional Skin Wound Model
TIMP-1-GO was administered subcutaneously to rats
to determine whether it could promote healing of the
experimental wound. Four weeks after surgery, in
comparison with control group, skin defects treated
with TIMP-1-GO showed significant differences in ter-
minal point (p <0.05), while skin defects treated with
TIMP-1 showed significant differences with the con-
trol group and GO group in terminal point (p < 0.05).
Furthermore, the TIMP-1-GO group exhibited an en-
hanced therapeutic effect in hair follicles regeneration
(p <0.05). Skin defects treated with TIMP-1 showed
significant differences with control group and GO
group in terminal point (p < 0.05) (Fig. 4b).
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Histologic and Immunohistochemical Analysis

Histologic features of skin regeneration after treat-
ment with PBS are displayed in Fig. 4b. The features
in control groups after skin defect show broken
collagen fiber visible in the specimens 4 weeks after
treatment. In contrast, continuous collagen fiber is
visible in the TIMP-1-GO groups at the same time
point and shows a statistical difference compared
with the control group. Immunohistochemical fea-
tures of vascularization after treatment of TIMP-1-
GO are displayed in Fig. 3c. CD34+ subcutaneous
cells are visible in the specimens after 4 weeks in
the TIMP-1-GO-treated groups. The quantitative as-
sessment revealed significant differences between the
control groups and the TIMP-1-GO treatment group
(p <0.05) (Fig. 4c).

Discussion

In the present study, we have analyzed a potential new
approach for enhancing excisional wound repair by
combining recombinant TIMP-1 protein with con-
trolled release from GO. GO has showed good bio-
compatibility in vitro. And TIMP-1 is shown to be
continuously released from the GO vehicle for up to
40 days. The combination of TIMP-1 with GO is
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Fig. 3 The effect of TIMP-1-GO on rat fibroblast cell proliferation and viability. a The viability of fibroblasts cultured in different groups show no
significant differences in different time points (p > 0.05). b The cell cycle of fibroblast was not significantly different than that of cells grown in
different groups (p > 0.05). ¢ The cell apoptosis of fibroblast was not significantly different than that of cells grown in different groups (p > 0.05)




Zhong et al. Nanoscale Research Letters (2017) 12:533

Page 6 of 8

a RatModel b Masson

CD34

c Semi-quantitative
Masson CD34
1504 204 *
— = 15 -—_'I_
£ 100} 3
] o
2 < 19
2 =
3
S 50
= 4 I_—l-_l
" Control GO TIMP-1 TIMP-1-GO Control GO TIMP-1 TIMP-1-GO
Hair follicles H.E.
155 » 150;
R — .
l+l = *
e el —
10 t
= £ 100]
3 —_ 2
8 2
51 = 5] J—
0- I I | | 0 | |
Control GO TIMP-1  TIMP-1-GO Control GO TIMP-1  TIMP-1-GO

Fig. 4 In vivo experiment. a Scheme and the SDS and model. b Histologic and immunohistochemical analysis in vivo (1 cm). Continuous
collagen fiber is visible in the TIMP-1-GO group. ¢ Quantitative assessment revealed significant differences between control and GO compared
with TIMP-1 and TIMP-1-GO (p < 0.05). The hair follicles of different groups were significantly different (p < 0.05). Skin defects treated with TIMP-1
showed significant differences with control group and GO group by semi-quantitative (p < 0.05)

shown to promote the vascularization and collagen re-
generation in an experimental skin defect model.

A variety of biomedical materials have been evaluated
as therapy vehicles for the delivery of agents in tissue re-
generation. Vehicles such as collagen, silk, titanium, cal-
cium phosphate cement, and polylactic acid-polyglycolic
acid tend to produce a rapid release of biological agent
that may be undesired in some therapy settings [23].
Therefore, the ability of a biomedical vector to provide a
slow continuous release of biological molecules can be
seen as an important feature. A requirement for this
quality is a flexible used to load the drug with the help
of an electric charge [24]. Graphene oxide (GO) provides

an “off-start” effect that has shown utility for the slow
release of various biologic agents both in vitro and in
vivo [25-27]. Here, we showed that GO can be used to
exert a sustained release of recombinant human TIMP-1
protein. The interaction between hydrophobic 7 do-
mains of GO and electrostatic interaction can activate
the negatively charged domains of GO and allow effi-
cient TIMP-1 protein absorption to GO via the inner
hydrophobic regions. The long release of TIMP-1 from
GO is ideally suitable for the necessary revascularization
in dermal wound repair.

It is suggested that carbon particles with a concen-
tration of more than 50 mg/ml might be deposited in
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tissues [28]. Wang et al. suggested that this may cause
inflammatory reactions due to its extremely small
diameter yet a large functional surface area of GO
[29]. In contrast to previous studies, GO deposition
was not detected in our study. Given the lack of an
obvious side effect seen here, the potential negative of
GO nanoparticles cannot be supported. Further stud-
ies have suggested on graphene including biological
response and safety test [30].

The research on the effect of the interaction of the
graphene oxide on cells is an important issue. Graphene
is a newly developed biomedical material whose proper-
ties suggest its use in many biological applications. How-
ever, the potential biology of two-dimensional carbon
structure/graphene toxicology and general biological in-
teractions are not fully understood, which will require
extensive additional studies.

Conclusion

Graphene oxide (GO) shows sustained biocompatibility
when used as a vehicle for the slow delivery of recom-
binant TIMP-1. TIMP-1 is shown to be continuously
released from GO for up to 40 days, and the combin-
ation of TIMP-1 with GO is shown to promote the re-
vascularization and collagen regeneration in a model of
skin regeneration.
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